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In this research paper, we analyze the flow characteristics of 
magnetohydrodynamic second grade fluid with heat and mass transfer 
embedded in porous medium. The modeling of partial differential equations 
governs the flow have been established with modern approach of Caputo-

Fabrizio fractional operator (
𝜕𝛿

𝜕𝑡𝛿
)

𝐶𝐹

. The partial differential equations of non-

integer order derivatives have been solved by invoking Laplace and Fourier 
sine transforms. The new analytic solutions for temperature, concentration 
and velocity are investigated and expressed in terms of simple elementary 
functions. The corresponding general solutions have been particularized 
with and without magnetic field and porous medium for the classical 
Newtonian and second grade fluids as the limiting cases of our general 
results. The effects of the embedded physical and geometric parameters have 
been depicted through graphs for velocity, temperature and concentration 
respectively. The graphical results show several physical discrepancies and 
analogies on the fluid flow. Finally, our results suggest that increasing the 
Grashof number, heat transfer due to convection facilitates the flow velocity 
profile and an opposite trend is observed in thermal Grashof number as well. 
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1. Introduction 

*It is well established fact that flow of non-
Newtonian liquids has great significance and 
capability than flow of Newtonian liquids in practical 
applications and technological development. The 
mathematicians, engineers, and numerical analysts 
have diverted their attention towards varied 
challenges of non-Newtonian liquids, and developing 
appropriate analytical and numerical solutions via 
different mathematical and experimental strategies. 
Due to highly nonlinear nature of the governing 
equations from the flow of non-Newtonian liquids, 
solution is still narrowed down extensively. In order 
to understand the characteristics and complexities of 
flow of non-Newtonian liquids, there is no single 
model which can completely characterize all the 
properties of non-Newtonian liquids. In brevity, the 
differential-type non-Newtonian liquids for instance 
third grade fluids and second grade fluids have 
achieved the significant attention of researchers. 

                                                 
* Corresponding Author.  
Email Address: kashif.abro@faculty.muet.edu.pk (K. A. Abro) 
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Some important applications of non-Newtonian 
liquids include, flow of mercury amalgams, flow of 
plasma, flow of liquid metals and alloys, flow of 
blood, flow of nuclear fuel slurries, chyme movement 
in the intestine, lubrications with heavy oils and 
greases, polymer solutions, food mixing, paint and 
several others (Dunn and Fosdick, 1974; Dunn and 
Rajagopal, 1995; Asghar et al., 2004; Vieru et al., 
2008; Abro and Solangi, 2017; Fetecau and Fetecau, 
2005; Nadeem, 2006; Laghari et al., 2017; Abro, 
2016). In this connection, mixed convection flow has 
played a significant role in the development and 
applications in industry and technology. From 
industrial and technological point of view, we affix 
here a few applications for instance, heat exchangers 
placed in a low-velocity environment, solar central 
receivers exposed to wind currents, nuclear reactors 
cooled during emergency shutdown, electronic 
devices cooled by fans, rotating heat exchanger, 
geothermal reservoirs, containers of nuclear waste 
disposal, spin-stabilized missiles and many others as 
well (Li et al., 2011). Nadeem and Saleem (2014) 
observed rotating second grade fluid for unsteady 
mixed convection flow in a rotating cone. They 
presented two cases namely prescribed heat flux 
(PHF) and prescribed wall temperature (PWT) via 
analytical approach of the homotopy analysis 
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method (HAM). Khan et al. (2017a) analyzed heat 
and mass transfer flow for MHD thin-film second-
grade fluid for the influences of thermal radiation 
and thermophoresis. They converted highly 
nonlinear coupled differential equations for the 
velocity field, temperature distribution and mass 
concentration of thin-film second-grade fluid flow by 
invoking appropriate similarity transformations and 
obtained solutions by implementing homotopy 
analysis method (HAM). Khan et al. (2017b) 
investigated Jeffery-Hamel flow of second-grade 
fluid for viscous dissipation, Dufour and Soret effects 
for stretchable walls. They analyzed Jeffery-Hamel 
flow of second-grade fluid using analytical and 
numerical approaches namely homotopy analysis 
method (HAM) and Runge-Kutta scheme 
respectively. Labropulu and Li (2016) worked on 
stagnation point flow of second-grade fluid on the 
plate. They transferred the governing partial 
differential equations into a system of ordinary 
differential equations and solved numerically using a 
shooting method. Their main significance was to 
check the effects of the Weissenberg number on the 
velocity near the wall.   Hayat et al. (2016) explored 
the impacts of MHD second grade fluid flow between 
two parallel disks. They investigated heat transfer 
analysis due to convective boundary condition and 
thermal radiation and obtained convergent solutions 
by applying homotopic approach. In order to 
disclose the physical aspects of this study, Skin 
friction coefficient and Nusselt number were also 
analyzed numerically. Bataineh et al. (2016) 
presented approximate solution for the heat transfer 
problem of second-grade fluid in a channel 
embedded with porosity based on the method of 
Bernstein polynomials. For the sake of physics of the 
heat transfer problem of second grade fluid, they 
applied the residual correction procedure for the 
estimation of the absolute error. They also compared 
analysis and results via homotopy analysis method 
and Runge-Kutta fourth order method. Hayat et al. 
(2017) examined the characteristics of temperature 
dependent thermal conductivity and thermal 
stratification for stretched flow of second grade 
liquid. They emphasized on the salient features of 
thermal relaxation time that revealed that 
temperature distribution enhanced via larger 
variable thermal conductivity parameter. Gul et al. 
(2015) obtained analytical solutions of second grade 
fluid over a vertical oscillating belt by invoking 
Adomian decomposition method (ADM). They 
emphasized thin film flow of second grade fluid for 
the comparative analysis of absolute error between 
Adomian decomposition method (ADM) and Optimal 
asymptotic method (OHAM). Shah and Khan (2016) 
investigated an interesting analysis for the thermal 
analysis of second grade fluid using modern 
approach of fractional calculus. They invoked 
Caputo–Fabrizio fractional derivatives approach on 
second grade fluid over an infinite oscillating plate. 
They analyzed temperature differences between the 
plate and the fluid and concluded that the heat 
transfer is caused by the buoyancy force. They also 

investigated the closed form solutions for 
temperature distribution and velocity profile and 
presented via graphical illustrations. Arshad et al. 
(2017) presented significant study of heat and mass 
transfer of second grade fluid via comparative 
analysis of Caputo–Fabrizio and Atanagna-Baleanu 
fractional derivatives. They nondimensionalized the 
governing partial differential equations of mass 
concentration, temperature distribution and velocity 
field and solved separately for comparison via 
Caputo–Fabrizio and Atanagna-Baleanu fractional 
derivatives. Off course the studies on heat and mass 
transfer of second grade fluid (Khan et al., 2017a; 
2017b; Labropulu and Li, 2016; Hayat et al., 2016) 
can continue but we end here by citing few recent 
references under different geometries and 
approaches (Ali et al., 2012; Gómez-Aguilar et al., 
2016; Abro et al., 2018a; 2018b; Jordan, 2017; Khan 
et al., 2018; Ahmed and Khan, 2018; Mishra et al., 
2018; Hussanan et al., 2018). Motivating by above 
discussions especially from modern fractional 
approaches and methodology of the solutions, our 
aim is to analyze the flow characteristics of 
magnetohydrodynamic second grade fluid with heat 
and mass transfer embedded in porous medium. The 
modeling of partial differential equations governs 
the flow has been established with modern approach 
of Caputo-Fabrizio fractional operator. The partial 
differential equations of non-integer order 
derivatives have been solved by invoking Laplace 
and Fourier sine transforms. The new analytic 
solutions for temperature, concentration and 
velocity are investigated and expressed in terms of 
simple elementary functions. The corresponding 
general solutions have been particularized with and 
without magnetic field and porous medium for the 
classical Newtonian and second grade fluids as the 
limiting cases of our general results. The effects of 
the embedded physical and geometric parameters 
have been depicted through graphs for velocity, 
temperature and concentration showing several 
differences and similarities on the second grade fluid 
flow.   

2. Mathematical formulation of the problem  

Assume that an incompressible, electrically 
conducting and fractional second grade fluid lying 
over an infinite rigid plate occupying the 𝑥𝑦 plane 
and plate is taken normally to the 𝑦 axis. Initially 
fluid and plate both are at rest and its temperature is 
𝑇∞ (ambient fluid temperature) and concentration is 
𝐶∞. After time 𝑡 = 0+, the plate begins to oscillate in 
its own plane and induced the motion with velocity 
𝑢(0, 𝑡) = 𝑈𝑠𝑖 𝑛(𝜔𝑡)  𝑜𝑟 𝑢(0, 𝑡) = 𝑈𝐻(𝑡)𝑐𝑜𝑠(𝜔𝑡). 

Meanwhile, the heat and mass transfer from the 
plate are raised to temperature 𝑇𝑤  and concentration 
𝐶𝑤  near the plate. We assume that the velocity field, 
temperature distribution and mass concentration 
are the function of 𝑦 and 𝑡 only. Owing to such 
occurrence of flow, the constraint of 
incompressibility is identically fulfilled. Employing 
the usual Boussinesq approximation, we arrive at the 
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following set of the governing boundary layer 
equations for the unsteady flow in fractional form as 
(Shah and Khan 2016; Arshad et al., 2017; Ali et al., 
2012): 

 
𝜕𝛿𝑢(𝑦,𝑡)

𝜕𝑡𝛿
= 𝜈

𝜕2𝑢(𝑦,𝑡)

𝜕𝑦2
+

𝛼1

𝜌

𝜕3𝑢(𝑦,𝑡)

𝜕𝑦2𝜕𝑡
−

𝜇𝜙

𝑘
(

𝛼1

𝜇

𝜕𝛿

𝜕𝑡𝛿
+ 1) 𝑢(𝑦, 𝑡)

−
𝜎𝐵0

2

𝜌
𝑢(𝑦, 𝑡) + 𝑔𝛽𝐶(𝐶(𝑦, 𝑡) − 𝐶∞) + 𝑔𝛽𝑇(𝑇(𝑦, 𝑡) − 𝑇∞)

  

  , 𝑦, 𝑡 > 0,                                  (1) 
1

𝑘

𝜕𝛿𝑇(𝑦,𝑡)

𝜕𝑡𝛿
=

1

𝜌𝐶𝑝

𝜕2𝑇(𝑦,𝑡)

𝜕𝑦2
 ,   𝑦, 𝑡 > 0,                   (2) 

1

𝐷

𝜕𝛿𝐶(𝑦,𝑡)

𝜕𝑡𝛿 =
𝜕2𝐶(𝑦,𝑡)

𝜕𝑦2  ,         𝑦, 𝑡 > 0.                   (3) 

 
For developing the set of governing boundary 

layer Eqs. 1-3 with time-fractional derivatives, we 
replace the time derivative of order one with the 
Caputo–Fabrizio time-fractional derivative of order 
0 ≤ 𝛿 ≤ 1. While the Caputo–Fabrizio time-
fractional operator is defined as in previously 
published papers (Caputo and Fabrizio, 2015): 

 

𝐷𝑡
𝛿𝑇(𝑦, 𝑡) =  

𝑀(𝛿)

1 − 𝛿
∫ exp

𝑡

0

(
−𝛿(𝑡 − 𝜏)

1 − 𝛿
) 𝑇 ,(𝜏)𝑑𝜏,          

0 ≤ 𝛿 ≤ 1.                         (4) 
 
Here, 𝑀(𝛿) is a normalization function like 

𝑀(0) = 𝑀(1) = 1. Subject to the initial and 
boundary conditions with no assumption of slippage 
between plate and fluid are  

 
𝑢(0, 𝑡) = 𝑈𝐻(𝑡)𝑐𝑜𝑠(𝜔𝑡) 𝑜𝑟 𝑈𝑠𝑖𝑛(𝜔𝑡), 𝑇(0, 𝑡) = 𝑇𝑤 ,
𝐶(0, 𝑡) = 𝐶𝑤 , 𝑡 > 𝑡0,                      (5) 
𝑢(𝑦, 0) = 0, 𝑇(𝑦, 0) = 0, 𝐶(𝑦, 0) = 0 , 𝑦 > 0,                     (6) 
𝑢(𝑦, 𝑡) → 0, 𝑇(𝑦, 𝑡) → 𝑇∞, 𝐶(𝑦, 𝑡) → 𝐶∞, 𝑦 → ∞, 𝑡 > 0. (7)

  
Implementing the following dimensionless 

quantities into Eqs. 1-3 and 5-7 and dropping the 
star notation for simplicity as: 

 

𝑡∗ =
𝑈0

2𝑡

𝜈
, 𝑦∗ =

𝑈0𝑦

𝜈 
,   𝑢∗ =

𝑢

𝑈0
, 𝐶 =

𝐶−𝐶∞

𝐶𝑤,−𝐶∞
,

𝑇 =
𝑇−𝑇∞

𝑇𝑤,−𝑇∞
, Φ =

𝜇𝜈𝜙

𝑈0
3𝑘𝜌

, 𝜆 =
𝛼1𝑈0

2

𝜇𝑣
, 𝑀 =

𝜈𝜎𝐵0
2

𝑈0
3𝜌

,    
   

𝐺𝑟 =
𝜈𝑔𝛽𝑇(𝑇𝑤,−𝑇∞)

𝑈0
3 , 𝑃𝑟 =

𝜇𝐶𝑝

𝑘
, 𝐺𝑚 =

𝜈𝑔𝛽𝐶(𝐶𝑤,−𝐶∞)

𝑈0
3 , 𝑆𝑐 =

𝜈

𝐷
.  (8) 

 
Under simplification, we arrive at the dimensionless 
governing partial differential equations in 
fractionalized form expressed below: 
   
𝜕𝛿𝑢(𝑦,𝑡)

𝜕𝑡𝛿 =
 𝜕2𝑢(𝑦,𝑡)

𝜕𝑦2 (1 + 𝜆
𝜕𝛿

𝜕𝑡𝛿) + 𝐺𝑟𝑇(𝑦, 𝑡) + 𝐺𝑚𝐶(𝑦, 𝑡) −

𝑀𝑢(𝑦, 𝑡) − Φ (1 + 𝜆
𝜕𝛿

𝜕𝑡𝛿) 𝑢(𝑦, 𝑡),                   (9) 
𝜕𝛿𝑇(𝑦,𝑡)

𝜕𝑡𝛿 =
1

𝑃𝑟

𝜕2𝑇(𝑦,𝑡)

𝜕𝑦2  ,   𝑦, 𝑡 > 0,                 (10) 

𝜕𝛿𝐶(𝑦,𝑡)

𝜕𝑡𝛿 =
1

𝑆𝑐

𝜕2𝐶(𝑦,𝑡)

𝜕𝑦2  ,         𝑦, 𝑡 > 0.                 (11) 

 
The suitable imposed conditions are  
 

𝑢(0, 𝑡) = 𝑢(0, 𝑡) = 𝑈𝐻(𝑡)𝑐𝑜𝑠(𝜔𝑡) 𝑜𝑟 𝑈𝑠𝑖𝑛(𝜔𝑡), 𝑇(0, 𝑡) =
𝑡, 𝐶(0, 𝑡) = 𝑡 , 𝑡 > 0,                   (12) 
𝑢(𝑦, 0) = 0, 𝑇(𝑦, 0) = 0, 𝐶(𝑦, 0) = 0 , 𝑦 > 0,                (13) 
𝑢(𝑦, 𝑡) → 0, 𝑇(𝑦, 𝑡) → 0, 𝐶(𝑦, 𝑡) → 0, 𝑦 → ∞, 𝑡 > 0.     (14) 

3. Solution of the problem 

3.1 Analytic solution of temperature distribution 
and mass concentration 

Applying Fourier Sine transform (Abro et al., 
2017; 2018c) on Eqs. 10-11 and keeping in mind 
Eqs. 12-14, we arrive at:  

 
𝜕𝛿𝑇𝑠(𝜉,𝑡)

𝜕𝑡𝛿 =
1

𝑃𝑟 
(−𝜉2𝑇𝑠(𝜉, 𝑡) + 𝜉√

2

𝜋
 𝑇(0, 𝑡)),                (15) 

𝜕𝛿𝐶𝑠 (𝜉,𝑡)

𝜕𝑡𝛿 =  
1

𝑆𝑐 
(−𝜉2𝐶𝑠(𝜉, 𝑡) + 𝜉√

2

𝜋
 𝐶(0, 𝑡)).                (16) 

 

Employing Laplace transform on Eqs. 15-16 and 
12-14, we get: 

 

�̅�𝑠(𝜉, 𝑠) = √
2

𝜋

𝜉(𝑠+ℜ1)

𝑠²(𝑃𝑟ℜ0+𝜉2)(𝑠+ℜ2)
,                 (17) 

𝐶�̅�(𝜉, 𝑠) = √
2

𝜋

𝜉(𝑠+ℜ1)

𝑠²(𝑆𝑐ℜ0+𝜉2)(𝑠+ℜ3)
,                 (18) 

 
where, 
 

 ℜ0 = 1

1−𝛿
 , ℜ1 = 𝛿ℜ0 , ℜ2 =

𝜉²𝛿ℜ0

𝑃𝑟ℜ0+𝜉2  and ℜ3 =
𝜉²𝛿ℜ0

𝑆𝑐ℜ0+𝜉2.  

 
Inverting Eqs. 17-18 by means of Fourier Sine 

transform and writing Eqs. 17-18 into suitable 
equivalent expressions, we obtain: 

 

�̅�(𝑦, 𝑠) =
2

𝜋
∫

𝑠𝑖𝑛(𝑦𝜉)

𝜉

∞

0
[

1

𝑠2
−

𝑃𝑟ℜ0

(𝑃𝑟ℜ0+𝜉2)𝑠(𝑠+ℜ2)
] 𝑑𝜉,                (19) 

𝐶̅(𝑦, 𝑠) =
2

𝜋
∫

𝑠𝑖𝑛(𝑦𝜉)

𝜉

∞

0
[

1

𝑠2
−

𝑆𝑐ℜ0

(𝑆𝑐ℜ0+𝜉2)𝑠(𝑠+ℜ3)
] 𝑑𝜉.                (20) 

 
Applying inverse Laplace transform and a fact of 

integral ∫
𝑠𝑖𝑛(𝑦𝜉)

𝜉
𝑑𝜉

∞

0
=

𝜋

2
, 𝑦 > 0 on Eqs. 19-20, we 

obtain final expressions for temperature distribution 
and mass concentration in terms of convolution 
theorem as: 

   

𝑇(𝑦, 𝑡) = 𝑡 +
2ℜ2ℜ4

𝜋
∫ ∫

𝑠𝑖𝑛(𝑦𝜉)

𝜉

𝑡

0

∞

0
(𝑡 − 𝑧)𝑒ℜ2𝑡𝑑𝑧 𝑑𝜉,           (21)

  

𝐶(𝑦, 𝑡) = 𝑡 +
2ℜ3ℜ5

𝜋
∫ ∫

𝑠𝑖𝑛(𝑦𝜉)

𝜉

𝑡

0

∞

0
(𝑡 − 𝑧)𝑒ℜ3𝑡𝑑𝑧 𝑑𝜉.           (22) 

 
where, 
 

 ℜ4 =
𝑃𝑟ℜ0

(𝑃𝑟ℜ0+𝜉2)
 and  ℜ5 =

𝑆𝑐ℜ0

(𝑆𝑐ℜ0+𝜉2)
. 

3.2 Analytic solution of velocity profile 

Case-I: For Cosine oscillations 
Applying Fourier Sine transform on Eq. 9 and 

keeping in mind Eqs. 12-14, we arrive at: 
 

𝜕𝛿𝑢𝑠(𝜉,𝑡)

𝜕𝑡𝛿 = (−𝜉2𝑢𝑠(𝜉, 𝑡) + 𝜉√
2

𝜋
 𝑢(0, 𝑡)) (1 + 𝜆

𝜕𝛿

𝜕𝑡𝛿) −

Φ (1 + 𝜆
𝜕𝛿

𝜕𝑡𝛿) 𝑢𝑠(𝜉, 𝑡) − 𝑀𝑢𝑠(𝜉, 𝑡) + 𝐺𝑟𝑇𝑠(𝜉, 𝑡)   

+𝐺𝑚𝐶𝑠(𝜉, 𝑡)                                                 (23) 
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Employing Laplace transform on Eq. 23 and Eqs. 
12-14, we get: 

 

𝑢𝑠̅̅ ̅( 𝜉, 𝑠) = 𝑈𝜉√
2

𝜋
 

 𝑠(𝑠+𝛿ℜ0)

(𝑠ℜ6+ℜ7)(𝑠2+𝜔2)
+

𝜆𝑈𝜉√
2

𝜋
 

 ℜ0𝑠2

(𝑠ℜ6+ℜ7)(𝑠2+𝜔2)
+

 𝐺𝑟�̅�𝑠(𝜉,𝑠)(𝑠+𝛿ℜ0)

(𝑠ℜ6+ℜ7)
  

+
𝐺𝑚𝐶�̅� (𝜉,𝑠)(𝑠+𝛿ℜ0)

(𝑠ℜ6+ℜ7)
,                                    (24) 

 
where, 
 
 ℜ6 = ℜ0 + ℜ0𝜆𝜉2 + 𝜉2 + Φ + Φℜ0𝜆 + 𝑀 and ℜ7 =
𝛿ℜ0(𝜉2 + Φ + 𝑀).  

 
Now inverting Eq. 24 by means of Fourier Sine 

transform and writing it into suitable equivalent 
expressions, we obtain: 
 

�̅�( 𝑦, 𝑠) =
2𝑈

𝜋
∫

𝑠𝑖𝑛(𝑦𝜉)

𝜉

∞

0
{

𝑠

(𝑠2+𝜔2)
−

𝑠(ℜ6−𝜉2)(𝑠+ℜ8)

ℜ6(𝑠2+𝜔2)(𝑠+ℜ9)
} 𝑑𝜉 +

2𝑈ℜ0𝜆

𝜋
∫

𝜉𝑠𝑖𝑛(𝑦𝜉)

𝜉

∞

0
               

           ×
 𝑠2

(𝑠ℜ6+ℜ7)(𝑠2+𝜔2)
𝑑𝜉 +

2𝐺𝑟

𝜋
∫

𝜉𝑠𝑖𝑛(𝑦𝜉)

(𝑃𝑟ℜ0+𝜉2)

∞

0

(𝑠+𝛿ℜ0)²

𝑠²(𝑠+ℜ2)(𝑠ℜ6+ℜ2)
𝑑𝜉 +

2𝐺𝑚

𝜋
  

               × ∫
𝜉𝑠𝑖𝑛(𝑦𝜉)

(𝑆𝑐ℜ0+𝜉2)

∞

0

(𝑠+𝛿ℜ0)²

𝑠²(𝑠+ℜ3)(𝑠ℜ6+ℜ3)
𝑑𝜉,                (25) 

 

where, 
 

 ℜ8 =
(ℜ7−𝛿ℜ0𝜉2)

ℜ6−𝜉2
 and ℜ9 =

ℜ7

ℜ6
.  

 
Applying inverse Laplace transform and a fact of 

integral ∫
𝑠𝑖𝑛(𝑦𝜉)

𝜉
𝑑𝜉

∞

0
=

𝜋

2
 on Eq. 25, we obtain final 

expressions for velocity field and mass concentration 
in terms of convolution theorem as 

 

𝑢(𝑦, 𝑡)𝐶𝑜𝑠𝑖𝑛𝑒 = 𝑈𝐻(𝑡) 𝑐𝑜𝑠(𝜔𝑡) +
2𝑈𝐻(𝑡)(ℜ6−𝜉2)(ℜ9−ℜ8)

𝜋ℜ6
∫ ∫

𝜉𝑠𝑖𝑛(𝑦𝜉)

𝜉

𝑡

0

∞

0

𝑐𝑜𝑠 𝜔(𝑡−𝜏)

𝑒ℜ9𝑡
𝑑𝜉 𝑑𝜏 +

2𝜆𝑈ℜ0ℜ9

𝜋ℜ6
∫ ∫

𝜉𝑠𝑖𝑛(𝑦𝜉)

𝜉

𝑡

0

∞

0

𝑐𝑜𝑠 𝜔(𝑡−𝜏)

𝑒ℜ9𝑡 𝑑𝜉 𝑑𝜏 +

2𝐺𝑟

𝜋
∫ ∫

𝜉𝑠𝑖𝑛(𝑦𝜉)

(𝑃𝑟ℜ0+𝜉2)

𝑡

0

∞

0
{

(𝛿ℜ0)2𝑡

ℜ6𝑒ℜ2(𝑡−𝜏)   +
ℜ10

(ℜ6ℜ7)2𝑒ℜ2(𝑡−𝜏)+ℜ9𝑡 +

ℜ11

ℜ7
2𝑒ℜ2(𝑡−𝜏)} 𝑑𝜉 𝑑𝜏 +

2𝐺𝑚

𝜋
∫ ∫

𝜉𝑠𝑖𝑛(𝑦𝜉)

(𝑆𝑐ℜ0+𝜉2)

𝑡

0

∞

0
{

(𝛿ℜ0)2𝑡

ℜ6𝑒ℜ3(𝑡−𝜏)  

            +
ℜ10

(ℜ6ℜ7)2𝑒ℜ3(𝑡−𝜏)+ℜ9𝑡 +
ℜ11

ℜ7
2𝑒ℜ3(𝑡−𝜏)} 𝑑𝜉 𝑑𝜏,                (26) 

 
where, 
 
 ℜ10 = (𝛿ℜ0ℜ7)2 − 2𝛿ℜ0ℜ6ℜ7 + ℜ7

2
, 

 ℜ11 = 2𝛿ℜ0ℜ7 − 𝛿ℜ0(𝛿ℜ0)2ℜ7. 

Case-II: For Sine oscillation 

By invoking similar algorithm, we investigated 
the velocity field for sine oscillation from Eq. 9, we 
obtain: 

  
𝑢(𝑦, 𝑡)𝑆𝑖𝑛𝑒 = 𝑈 𝑠𝑖𝑛(𝜔𝑡) +
2𝑈(ℜ6−𝜉2)(ℜ9−ℜ8)

𝜋ℜ6
∫ ∫

𝜉𝑠𝑖𝑛(𝑦𝜉)

𝜉

𝑡

0

∞

0

𝑠𝑖𝑛 𝜔(𝑡−𝜏)

𝑒ℜ9𝑡 𝑑𝜉 𝑑𝜏 +

2𝜆𝑈ℜ0ℜ9

𝜋ℜ6
∫ ∫

𝜉𝑠𝑖𝑛(𝑦𝜉)

𝜉

𝑡

0

∞

0

𝑠𝑖𝑛 𝜔(𝑡−𝜏)

𝑒ℜ9𝑡 𝑑𝜉 𝑑𝜏 +

2𝐺𝑟

𝜋
∫ ∫

𝜉𝑠𝑖𝑛(𝑦𝜉)

(𝑃𝑟ℜ0+𝜉2)

𝑡

0

∞

0
{

(𝛿ℜ0)2𝑡

ℜ6𝑒ℜ2(𝑡−𝜏)
  +

ℜ10

(ℜ6ℜ7)2𝑒ℜ2(𝑡−𝜏)+ℜ9𝑡 +

ℜ11

ℜ7
2

𝑒ℜ2(𝑡−𝜏)} 𝑑𝜉 𝑑𝜏 +
2𝐺𝑚

𝜋
∫ ∫

𝜉𝑠𝑖𝑛(𝑦𝜉)

(𝑆𝑐ℜ0+𝜉
2

)

𝑡

0

∞

0
{

(𝛿ℜ0)
2

𝑡

ℜ6𝑒ℜ3(𝑡−𝜏)  

+
ℜ10

(ℜ6ℜ7)2𝑒ℜ3(𝑡−𝜏)+ℜ9𝑡 +
ℜ11

ℜ7
2𝑒ℜ3(𝑡−𝜏)} 𝑑𝜉 𝑑𝜏.                (27) 

4. Special solutions 

4.1 Velocity field of fractional second grade fluid 
without magnetic field with porous medium     

Letting 𝑀 = 0, Φ ≠ 0, 𝜆 ≠ 0 in the Eq. 26 and Eq. 
27, we reduced the general analytical solutions for 
Caputo-Fabrizio fractional second grade fluid in the 
absence of magnetic field with porous medium for 
sine and cosine oscillations as 

 
𝑢(𝑦, 𝑡)𝐶𝑜𝑠𝑖𝑛𝑒 = 𝑈𝐻(𝑡) cos(𝜔𝑡) +
2𝑈𝐻(𝑡)(ℜ12−𝜉2)(ℜ15−ℜ14)

𝜋ℜ12
 ∫ ∫

𝜉sin (𝑦𝜉)𝑐𝑜𝑠𝜔(𝑡−𝜏)

𝑒ℜ15𝑡
𝑑𝜉𝑑𝜏

𝑡

0

∞

0
  

+
2𝜆𝑈ℜ0ℜ15

𝜋ℜ12
∫ ∫

𝜉sin (𝑦𝜉)

𝜉

𝑐𝑜𝑠𝜔(𝑡−𝜏)

𝑒ℜ15𝑡
𝑑𝜉𝑑𝜏

𝑡

0

∞

0
+

2𝐺𝑟

𝜋
∫ ∫

𝜉sin (𝑦𝜉)

(𝑃𝑟ℜ0+𝜉2)

𝑡

0

∞

0
{

(𝛿ℜ0)2𝑡

ℜ12𝑒ℜ2(𝑡−𝜏)   

+
ℜ16

(ℜ12ℜ13)2𝑒ℜ2(𝑡−𝜏)+ℜ15𝑡
+

ℜ17

ℜ13
2 𝑒ℜ2(𝑡−𝜏)

} 𝑑𝜉𝑑𝜏 +

2𝐺𝑚

𝜋
∫ ∫

𝜉sin (𝑦𝜉)

(𝑆𝑐ℜ0+𝜉2)

𝑡

0

∞

0
× {

(𝛿ℜ0)2𝑡

ℜ12𝑒ℜ3(𝑡−𝜏) +
ℜ10

(ℜ12ℜ13)2𝑒ℜ3(𝑡−𝜏)+ℜ15𝑡 +

ℜ17

ℜ13
2 𝑒ℜ3(𝑡−𝜏)

} 𝑑𝜉𝑑𝜏,                       (28) 

 
𝑢(𝑦, 𝑡)𝑆𝑖𝑛𝑒 = 𝑈 sin(𝜔𝑡) +
2𝑈(ℜ12−𝜉2)(ℜ15−ℜ14)

𝜋ℜ12
 ∫ ∫

𝜉sin (𝑦𝜉)𝑠𝑖𝑛𝜔(𝑡−𝜏)

𝑒ℜ15𝑡 𝑑𝜉𝑑𝜏
𝑡

0

∞

0
+

2𝜆𝑈ℜ0ℜ15

𝜋ℜ12
∫ ∫

sin (𝑦𝜉)

𝜉

𝑠𝑖𝑛𝜔(𝑡−𝜏)

𝑒ℜ15𝑡 𝑑𝜉𝑑𝜏
𝑡

0

∞

0
+

2𝐺𝑟

𝜋
∫ ∫

𝜉 sin(𝑦𝜉)

(𝑃𝑟ℜ0+𝜉2)

𝑡

0

∞

0
{

(𝛿ℜ0)2𝑡

ℜ12𝑒ℜ2(𝑡−𝜏)  

+
ℜ16

(ℜ12ℜ13)2𝑒ℜ2(𝑡−𝜏)+ℜ15𝑡
+

ℜ17

ℜ13
2 𝑒ℜ2(𝑡−𝜏)

} 𝑑𝜉𝑑𝜏 +

2𝐺𝑚

𝜋
∫ ∫

𝜉sin (𝑦𝜉)

(𝑆𝑐ℜ0+𝜉2)

𝑡

0

∞

0
   

× {
(𝛿ℜ0)2𝑡

ℜ12𝑒ℜ3(𝑡−𝜏) +
ℜ10

(ℜ12ℜ13)2𝑒ℜ3(𝑡−𝜏)+ℜ15𝑡 +
ℜ17

ℜ13
2 𝑒ℜ3(𝑡−𝜏)} 𝑑𝜉𝑑𝜏.    (29) 

 
where, 
 
ℜ12 = ℜ0 + ℜ0𝜆𝜉2 + 𝜉2 + 𝛷 + 𝛷ℜ0𝜆 , ℜ13 = ℜ1(𝜉2 +

𝛷), ℜ14 =
(ℜ13−ℜ1𝜉2) 

(ℜ12−𝜉2)
, ℜ15 =

ℜ13

ℜ12
,                

ℜ16 = (ℜ1ℜ13)2 − 2ℜ1ℜ12ℜ13 + (ℜ13)2 𝑎𝑛𝑑 ℜ17 =
2ℜ1ℜ13 − (ℜ1)3.  

4.2 Velocity field of fractional second grade fluid 
without porous medium with magnetic field  

Employing Φ = 0, 𝑀 ≠ 0, 𝜆 ≠ 0 in the Eq. 26 and 
Eq. 27, we reduced the general analytical solutions 
for Caputo-Fabrizio fractional second grade fluid in 
the absence of porous medium with magnetic field 
for sine and cosine oscillations as 

 
𝑢(𝑦, 𝑡)𝐶𝑜𝑠𝑖𝑛𝑒 = 𝑈𝐻(𝑡) cos(𝜔𝑡) +
2𝑈𝐻(𝑡)(ℜ18−𝜉2)(ℜ21−ℜ20)

𝜋ℜ18
 ∫ ∫

𝜉sin (𝑦𝜉)𝑐𝑜𝑠𝜔(𝑡−𝜏)

𝑒ℜ21𝑡 𝑑𝜉𝑑𝜏
𝑡

0

∞

0
+

2𝜆𝑈ℜ0ℜ21

𝜋ℜ18
∫ ∫

𝜉 sin(𝑦𝜉)

𝜉

𝑐𝑜𝑠𝜔(𝑡−𝜏)

𝑒ℜ21𝑡 𝑑𝜉𝑑𝜏
𝑡

0

∞

0
+

2𝐺𝑟

𝜋
∫ ∫

𝜉 sin(𝑦𝜉)

(𝑃𝑟ℜ0+𝜉2)

𝑡

0

∞

0
{

(𝛿ℜ0)2𝑡

ℜ18𝑒ℜ2(𝑡−𝜏) +
ℜ22

(ℜ18ℜ19)2𝑒ℜ2(𝑡−𝜏)+ℜ21𝑡 +
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ℜ23

ℜ19
2 𝑒ℜ2(𝑡−𝜏)

} 𝑑𝜉𝑑𝜏 +
2𝐺𝑚

𝜋
∫ ∫

𝜉sin (𝑦𝜉)

(𝑆𝑐ℜ0+𝜉2)

𝑡

0

∞

0
× {

(𝛿ℜ0)2𝑡

ℜ18𝑒ℜ3(𝑡−𝜏)
+

ℜ22

(ℜ18ℜ19)2𝑒ℜ3(𝑡−𝜏)+ℜ21𝑡
+

ℜ23

ℜ19
2 𝑒ℜ3(𝑡−𝜏)

} 𝑑𝜉𝑑𝜏,                 (30) 

 
𝑢(𝑦, 𝑡)𝑆𝑖𝑛𝑒 = 𝑈 sin(𝜔𝑡) +
2𝑈(ℜ18−𝜉2)(ℜ21−ℜ20)

𝜋ℜ18
 ∫ ∫

𝜉sin (𝑦𝜉)𝑠𝑖𝑛𝜔(𝑡−𝜏)

𝑒ℜ21𝑡
𝑑𝜉𝑑𝜏

𝑡

0

∞

0
+

2𝜆𝑈ℜ0ℜ21

𝜋ℜ18
∫ ∫

𝜉 sin(𝑦𝜉)

𝜉

𝑠𝑖𝑛𝜔(𝑡−𝜏)

𝑒ℜ21𝑡
𝑑𝜉𝑑𝜏

𝑡

0

∞

0
+

2𝐺𝑟

𝜋
∫ ∫

𝜉 sin(𝑦𝜉)

(𝑃𝑟ℜ0+𝜉2)

𝑡

0

∞

0
{

(𝛿ℜ0)2𝑡

ℜ18𝑒ℜ2(𝑡−𝜏)
+

ℜ22

(ℜ18ℜ19)2𝑒ℜ2(𝑡−𝜏)+ℜ21𝑡
+

ℜ23

ℜ19
2 𝑒ℜ2(𝑡−𝜏)} 𝑑𝜉𝑑𝜏 +

2𝐺𝑚

𝜋
∫ ∫

𝜉sin (𝑦𝜉)

(𝑆𝑐ℜ0+𝜉2)

𝑡

0

∞

0
× {

(𝛿ℜ0)2𝑡

ℜ18𝑒ℜ3(𝑡−𝜏) +

ℜ22

(ℜ18ℜ19)2𝑒ℜ3(𝑡−𝜏)+ℜ21𝑡
+

ℜ23

ℜ19
2 𝑒ℜ3(𝑡−𝜏)

} 𝑑𝜉𝑑𝜏,                 (31) 

 
where,  
 
ℜ18 = ℜ0 + ℜ0𝜆𝜉2 + 𝜉2  + 𝑀, ℜ19 = ℜ1(𝜉2 + 𝑀), ℜ20 =
(ℜ19−𝛼ℜ0𝜉2) 

(ℜ18−𝜉2)
, ℜ21 =

ℜ19

ℜ18
,            

ℜ22 = (ℜ1ℜ19)2 − 2ℜ1ℜ18ℜ19 + (ℜ19)2  𝑎𝑛𝑑   ℜ23

= 2ℜ1ℜ19 − (ℜ1)3ℜ19. 

4.3 Velocity field of fractional Newtonian fluid 
with magnetic field and porous medium 

Letting 𝜆 = 0, 𝑀 ≠ 0, Φ ≠ 0 in the Eq. 26 and Eq. 
27, we obtain the general analytical solutions for 
Caputo-Fabrizio fractional Newtonian fluid in the 
presence of porous medium and magnetic field for 
sine and cosine oscillations as: 

 
𝑢(𝑦, 𝑡)𝐶𝑜𝑠𝑖𝑛𝑒 = 𝑈𝐻(𝑡) 𝑐𝑜𝑠(𝜔𝑡) −
2𝑈𝐻(𝑡)(ℜ24−𝜉2)(ℜ26−ℜ25)

𝜋ℜ24
 ∫ ∫

𝑠𝑖𝑛 (𝑦𝜉)𝑐𝑜𝑠𝜔(𝑡−𝜏)

𝜉𝑒ℜ26𝑡
𝑑𝜉𝑑𝜏

𝑡

0

∞

0
 +

2𝐺𝑟

𝜋
∫ ∫

𝜉𝑠𝑖𝑛 (𝑦𝜉)

(𝑃𝑟ℜ0+𝜉2)
{

(𝛿ℜ0)2𝑡

ℜ24𝑒ℜ2(𝑡−𝜏)
+

ℜ27

(ℜ24ℜ7)2𝑒ℜ2(𝑡−𝜏)+ℜ26𝑡
+

𝑡

0

∞

0

ℜ28

ℜ7
2𝑒ℜ2(𝑡−𝜏)

} 𝑑𝜉𝑑𝜏 +
2𝐺𝑚

𝜋
∫ ∫

𝜉 𝑠𝑖𝑛(𝑦𝜉)

(𝑆𝑐ℜ0+𝜉2)
{

(𝛿ℜ0)2𝑡

ℜ24𝑒ℜ3(𝑡−𝜏) +
𝑡

0

∞

0

ℜ27

(ℜ24ℜ7)2𝑒ℜ3(𝑡−𝜏)+ℜ26𝑡 +
ℜ28

ℜ7
2𝑒ℜ3(𝑡−𝜏)} 𝑑𝜉𝑑𝜏,                 (32) 

 
𝑢(𝑦, 𝑡)𝑆𝑖𝑛𝑒 = 𝑈 𝑠𝑖𝑛(𝜔𝑡) −
2𝑈(ℜ24−𝜉2)(ℜ26−ℜ25)

𝜋ℜ24
 ∫ ∫

𝑠𝑖𝑛 (𝑦𝜉)𝑠𝑖𝑛𝜔(𝑡−𝜏)

𝜉𝑒ℜ26𝑡 𝑑𝜉𝑑𝜏
𝑡

0

∞

0
+

2𝐺𝑟

𝜋
∫ ∫

𝜉𝑠𝑖𝑛 (𝑦𝜉)

(𝑃𝑟ℜ0+𝜉2)
{

(𝛿ℜ0)2𝑡

ℜ24𝑒ℜ2(𝑡−𝜏) +
ℜ27

(ℜ24ℜ7)2𝑒ℜ2(𝑡−𝜏)+ℜ26𝑡 +
𝑡

0

∞

0

ℜ28

ℜ7
2𝑒ℜ2(𝑡−𝜏)} 𝑑𝜉𝑑𝜏  

+
2𝐺𝑚

𝜋
∫ ∫

𝜉𝑠𝑖𝑛 (𝑦𝜉)

(𝑆𝑐ℜ0+𝜉2)
{

(𝛿ℜ0)2𝑡

ℜ24𝑒ℜ3(𝑡−𝜏) +
ℜ27

(ℜ24ℜ7)2𝑒ℜ3(𝑡−𝜏)+ℜ26𝑡 +
𝑡

0

∞

0

ℜ28

ℜ7
2𝑒ℜ3(𝑡−𝜏)} 𝑑𝜉𝑑𝜏.                   (33) 

 
where, 
 
 ℜ24 = ℜ0 + 𝜉2 + 𝛷 + 𝛷ℜ0𝜆 + 𝑀, ℜ7 = 𝛼ℜ0 (𝜉2 + 𝛷 +

𝑀), ℜ25 =
(ℜ7−ℜ1 𝜉

2)

( ℜ24 −𝜉2)
, ℜ26 =

ℜ7

ℜ24
, 

ℜ27 = (ℜ1 ℜ7)2 − 2ℜ1 ℜ24ℜ7 + (ℜ7)2𝑎𝑛𝑑 ℜ28 =
2ℜ1 ℜ7 − (ℜ1 )

3ℜ7. 

4.4 Velocity field of fractional Newtonian fluid 
without magnetic field with porous medium 

Letting 𝜆 = 0, 𝑀 = 0, Φ ≠ 0 in the Eq. 26 and Eq. 
27, we obtain the general analytical solutions for 
Caputo-Fabrizio fractional Newtonian fluid in the 
presence of porous medium and without magnetic 
field for sine and cosine oscillations as: 

 
𝑢(𝑦, 𝑡)𝐶𝑜𝑠𝑖𝑛𝑒 = 𝑈𝐻(𝑡) 𝑐𝑜𝑠(𝜔𝑡) −
2𝑈𝐻(𝑡)(ℜ29−𝜉2)(ℜ31−ℜ30)

𝜋ℜ29
 ∫ ∫

𝑠𝑖𝑛 (𝑦𝜉)𝑐𝑜𝑠𝜔(𝑡−𝜏)

𝜉𝑒ℜ31𝑡
𝑑𝜉𝑑𝜏

𝑡

0

∞

0
+

2𝐺𝑟

𝜋
∫ ∫

𝜉𝑠𝑖𝑛 (𝑦𝜉)

(𝑃𝑟ℜ0+𝜉2)
{

(𝛿ℜ0)2𝑡

ℜ29𝑒ℜ2(𝑡−𝜏)
+

ℜ32

(ℜ29ℜ13)2𝑒ℜ2(𝑡−𝜏)+ℜ26𝑡
+

𝑡

0

∞

0

ℜ33

ℜ13
2 𝑒ℜ2(𝑡−𝜏)

} 𝑑𝜉𝑑𝜏             +
2𝐺𝑚

𝜋
∫ ∫

𝜉𝑠𝑖𝑛 (𝑦𝜉)

(𝑆𝑐ℜ0+𝜉2)
{

(𝛿ℜ0)2𝑡

ℜ29𝑒ℜ3(𝑡−𝜏)
+

𝑡

0

∞

0

ℜ32

(ℜ29ℜ13)2𝑒ℜ3(𝑡−𝜏)+ℜ26𝑡
+

ℜ33

ℜ13
2 𝑒ℜ3(𝑡−𝜏)

} 𝑑𝜉𝑑𝜏,                 (34)

  
𝑢(𝑦, 𝑡)𝑆𝑖𝑛𝑒 = 𝑈 sine(𝜔𝑡) −
2𝑈(ℜ29−𝜉2)(ℜ31−ℜ30)

𝜋ℜ29
 ∫ ∫

sin (𝑦𝜉)𝑠𝑖𝑛𝜔(𝑡−𝜏)

𝜉𝑒ℜ31𝑡
𝑑𝜉𝑑𝜏

𝑡

0

∞

0
+

2𝐺𝑟

𝜋
∫ ∫

𝜉sin (𝑦𝜉)

(𝑃𝑟ℜ0+𝜉2)
{

(𝛿ℜ0)2𝑡

ℜ29𝑒ℜ2(𝑡−𝜏)
+

ℜ32

(ℜ29ℜ13)2𝑒ℜ2(𝑡−𝜏)+ℜ26𝑡
+

𝑡

0

∞

0

ℜ33

ℜ13
2 𝑒ℜ2(𝑡−𝜏)

} 𝑑𝜉𝑑𝜏 +
2𝐺𝑚

𝜋
∫ ∫

𝜉 sin(𝑦𝜉)

(𝑆𝑐ℜ0+𝜉2)
{

(𝛿ℜ0)2𝑡

ℜ29𝑒ℜ3(𝑡−𝜏) +
𝑡

0

∞

0

ℜ32

(ℜ29ℜ13)2𝑒ℜ3(𝑡−𝜏)+ℜ26𝑡 +
ℜ33

ℜ13
2 𝑒ℜ3(𝑡−𝜏)} 𝑑𝜉𝑑𝜏.                 (35) 

 
where, 
 
 ℜ29 = ℜ0 + 𝜉2 + 𝛷 + 𝛷ℜ0𝜆 , ℜ13 = 𝛿ℜ0 (𝜉2 +

𝛷 +), ℜ30 =
(ℜ13−ℜ1 𝜉

2)

( ℜ29 −𝜉2)
, ℜ31 =

ℜ13

ℜ29
, ℜ32 = (ℜ1 ℜ13)2 −

2ℜ1 ℜ29ℜ13 + (ℜ13)2and ℜ33 = 2ℜ1 ℜ13 − (ℜ1 )
3ℜ13 

4.5 Velocity field of fractional Newtonian fluid 
with magnetic field with without porous medium 

Letting 𝜆 = 0, 𝑀 ≠ 0, Φ = 0 in the Eq. 26 and Eq. 
27, we obtain the general analytical solutions for 
Caputo-Fabrizio fractional Newtonian fluid in the 
absence of porous medium and with magnetic field 
for sine and cosine oscillations as: 

 
𝑢(𝑦, 𝑡)𝐶𝑜𝑠𝑖𝑛𝑒 = 𝑈𝐻(𝑡) cos(𝜔𝑡) −
2𝑈𝐻(𝑡)(ℜ34−𝜉2)(ℜ36−ℜ35)

𝜋ℜ34
 ∫ ∫

sin (𝑦𝜉)𝑐𝑜𝑠𝜔(𝑡−𝜏)

𝜉𝑒ℜ31𝑡 𝑑𝜉𝑑𝜏
𝑡

0

∞

0
+

2𝐺𝑟

𝜋
∫ ∫

𝜉sin (𝑦𝜉)

(𝑃𝑟ℜ0+𝜉2)
{

(𝛿ℜ0)2𝑡

ℜ34𝑒ℜ2(𝑡−𝜏) +
ℜ37

(ℜ34ℜ19)2𝑒ℜ2(𝑡−𝜏)+ℜ36𝑡 +
𝑡

0

∞

0

ℜ38

ℜ19
2 𝑒ℜ2(𝑡−𝜏)} 𝑑𝜉𝑑𝜏 +

2𝐺𝑚

𝜋
∫ ∫

𝜉sin (𝑦𝜉)

(𝑆𝑐ℜ0+𝜉2)
{

(𝛿ℜ0)2𝑡

ℜ34𝑒ℜ3(𝑡−𝜏) +
𝑡

0

∞

0

ℜ37

(ℜ34ℜ19)2𝑒ℜ3(𝑡−𝜏)+ℜ36𝑡 +
ℜ38

ℜ19
2 𝑒ℜ3(𝑡−𝜏)} 𝑑𝜉𝑑𝜏,                 (36) 

 
𝑢(𝑦, 𝑡)𝑆𝑖𝑛𝑒 = 𝑈 sin(𝜔𝑡) −
2𝑈(ℜ34−𝜉2)(ℜ36−ℜ35)

𝜋ℜ34
 ∫ ∫

sin (𝑦𝜉)𝑠𝑖𝑛𝜔(𝑡−𝜏)

𝜉𝑒ℜ31𝑡 𝑑𝜉𝑑𝜏
𝑡

0

∞

0
+

2𝐺𝑟

𝜋
∫ ∫

𝜉sin (𝑦𝜉)

(𝑃𝑟ℜ0+𝜉2)
{

(𝛿ℜ0)2𝑡

ℜ34𝑒ℜ2(𝑡−𝜏) +
ℜ37

(ℜ34ℜ19)2𝑒ℜ2(𝑡−𝜏)+ℜ36𝑡 +
𝑡

0

∞

0

ℜ38

ℜ19
2 𝑒ℜ2(𝑡−𝜏)} 𝑑𝜉𝑑𝜏 +

2𝐺𝑚

𝜋
∫ ∫

𝜉 sin(𝑦𝜉)

(𝑆𝑐ℜ0+𝜉2)
{

(𝛿ℜ0)2𝑡

ℜ34𝑒ℜ3(𝑡−𝜏) +
𝑡

0

∞

0

ℜ37

(ℜ34ℜ19)2𝑒ℜ3(𝑡−𝜏)+ℜ36𝑡 +
ℜ38

ℜ19
2 𝑒ℜ3(𝑡−𝜏)} 𝑑𝜉𝑑𝜏.                 (37) 

 
where, 
 
 ℜ34 = ℜ0 + 𝜉2 + 𝑀 , ℜ19 = ℜ1(𝜉2 + 𝑀), ℜ35 =
(ℜ19−ℜ1𝜉2) 

(ℜ34−𝜉2)
, ℜ36 =

ℜ19

ℜ34
, 

ℜ37 = (ℜ1)2 − 2ℜ1ℜ34ℜ19 + ℜ19
2, ℜ38 = 2ℜ1ℜ19 −

(ℜ1)3ℜ19. 
 
However, letting 𝛿 = 1 in the Eq. 26 and Eq. 27, 

we obtain the general analytical solutions for 
ordinary second grade fluid in the presence of 
porous medium and magnetic field for sine and 
cosine oscillations as well. Furthermore, the present 
solutions obtained by Caputo-Fabrizio fractional 
derivative become identical and similar solutions 
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investigated in Shah and Khan (2016) (see Eq. 22 
and Eq. 26) when 𝐺𝑚 = 0 (in the absence of mass 
concentration), 𝑀 = 0 (in the absence of magnetic 
field) and Φ = 0 (in the absence of porous medium). 
Meanwhile, when we substitute 𝑀 = Φ = 𝜔 = 0 in 
present solutions, our solutions can be retrieved in 
the absence of magnetic field and porous medium 
with Caputo-Fabrizio fractional operator. Such 
fractional solutions are investigated in literature 
obtained by Arshad et al. (2017) (see Eq. 47).      

5. Parametric results and conclusion 

This paragraph emphasizes on the numerical 
results and discussions for the analysis of the flow 
electrically conducting second grade fluid with heat 
and mass transfer embedded in porous medium. By 
invoking Laplace and Fourier sine transforms on 
non-integer order differential equations, the new 
analytic solutions for temperature, concentration 
and velocity are investigated. The general solutions 
are particularized with and without magnetic field 
and porous medium for the classical Newtonian and 
second grade fluids as the special solutions. The 
salient impacts of distinct parameters are reported 
graphically that show several physical aspects on the 
fluid flow. It is worth pointed out that the main 

novelty of this work is to check the influences of the 
analytic solutions on the graphical comparison for 
four types of models namely (i) Caputo-Fabrizio 
fractional solutions for second grade fluid with and 
without magnetic field and porous medium, (ii) 
Ordinary solutions for second grade fluid with and 
without magnetic field and porous medium (iii) 
Caputo-Fabrizio fractional solutions for Newtonian 
(viscous) fluid with and without magnetic field and 
porous medium and (iv) Ordinary solutions for 
Newtonian (viscous) fluid with and without 
magnetic field and porous medium. In brevity, the 
major highlights are described in context with 
physical aspects as enumerated below: 

 
(i) Fig. 1 is prepared to display the impacts of 

Caputo-Fabrizio fractional parameter on the 
profile of the temperature distribution and mass 
concentration. It can be seen that the enhancing 
the values of Caputo-Fabrizio fractional 
parameter 𝛿 the behavior is decreasing function 
in terms of fractional parameter 𝛿. This is due to 
the fact that diffusion penetrates deeper into the 
fluid, hence it causes the thickening of the 
concentration boundary layer as well as the 
thermal boundary layer. 

 

 
Fig. 1: Profile of temperature distribution and mass concentration for Caputo-Fabrizio fractional parameter 

 

(ii) It is well established fact that Prandtl number 𝑃𝑟 
plays a significant role among industries and 
engineering systems as it depends upon quality 
production, such quality production can be 
achieved via suitable choice of Prandtl number 
𝑃𝑟. Here Fig. 2 is depicted for the effects of 
Prandtl 𝑃𝑟 and Schmidt 𝑆𝑐 numbers on 
temperature distribution and mass concertation 
respectively. It is noted that increase in Prandtl 
number 𝑃𝑟 does not give reduction in thermal 
layer. Even weaker conductivity depends upon 
larger amount of Prandtl number 𝑃𝑟. On the 
contrary, similar trend is noticed in mass 
concertation with respect to Schmidt number.  

(iii) Fig. 3 elucidates the modified Grashof and 
thermal Grashof numbers on the velocity field, 
here we considered suitable values for 𝐺𝑟 =
2,4,6,8 and thermal Grashof 𝐺𝑚 = 1,3,5,7. It is 
noted that an increase in the velocity profile is 

observed when the Grashof number is increased. 
From physical point of view by increasing the 
Grashof number, heat transfer due to convection 
facilitates the flow velocity profile. Meanwhile, an 
opposite trend is observed in thermal Grashof 
number with similar effects as compared to the 
Grashof number. 

(iv) Effects of magnetic field and porous medium 
on the velocity field are presented in Fig. 4. The 
presence of magnetic field exerts resistive force 
so called Lorentz force, as the result flow velocity 
reduces due to existence of magnetic field. On the 
contrary, it is noted that the velocity field has 
reciprocal behavior for the analysis of porosity. 
Hence, increase in porosity increases the velocity 
profile. 

(v)  It is worth pointed out from Fig. 5 that the 
graphical comparison for four types of models 
can be analyzed namely (i) Caputo-Fabrizio 
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fractional solutions for second grade fluid with 
and without magnetic field and porous medium, 
(ii) Ordinary solutions for second grade fluid with 
and without magnetic field and porous medium 
(iii) Caputo-Fabrizio fractional solutions for 
Newtonian (viscous) fluid with and without 
magnetic field and porous medium and (iv) 
Ordinary solutions for Newtonian (viscous) fluid 
with and without magnetic field and porous 
medium. In this comparative analysis, an 
observation declares that ordinary Newtonian 

fluid with magnetic field and porous medium is 
dominant than other models. In simple words, 
ordinary Newtonian fluid with magnetic field and 
porous medium moves faster in comparison with 
remaining models of the interest. However, the 
observation for above models has been 
performed for the sake of simplicity of this 
analysis. Meanwhile, the same phenomenon can 
also be analyzed for the temperature and 
concentration distribution via ordinary and 
Caputo-Fabrizio fractional operator. 

 

 
Fig. 2: Profile of temperature distribution and mass concentration for Prandtl and Schmidt numbers respectively 

 

 
Fig. 3: Profile of velocity field for modified Grashof and thermal Grashof numbers respectively 

 

 
Fig. 4: Profile of velocity field for porous and magnetic field respectively 
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Fig. 5: Profile of velocity field comparison of fractional and ordinary models with and without magnetic field and porous 

medium 
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